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Accelerated Monte Carlo for Optimal Estimation of
Time Series
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By casting stochastic optimal estimation of time series in path integral form,
one can apply analytical and computational techniques of equilibrium statisti-
cal mechanics. In particular, one can use standard or accelerated Monte Carlo
methods for smoothing, filtering and/or prediction. Here we demonstrate the
applicability and efficiency of generalized (nonlocal) hybrid Monte Carlo and
multigrid methods applied to optimal estimation, specifically smoothing. We
test these methods on a stochastic diffusion dynamics in a bistable potential.
This particular problem has been chosen to illustrate the speedup due to the
nonlocal sampling technique, and because there is an available optimal solution
which can be used to validate the solution via the hybrid Monte Carlo strategy.
In addition to showing that the nonlocal hybrid Monte Carlo is statistically
accurate, we demonstrate a significant speedup compared with other strategies,
thus making it a practical alternative to smoothing/filtering and data assimila-
tion on problems with state vectors of fairly large dimensions, as well as a large
total number of time steps.

KEY WORDS: path integral; stochastic processes; time series; hybrid Monte
Carlo.

1. INTRODUCTION

Simplicity and generality make Markov-chain Monte Carlo (MC) one of
the most powerful and most popular approaches to problems of model,
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parameter, and state estimation. As a result, MC has been applied across
a wide range of disciplines for optimal estimation, including finance,(1) cli-
mate dynamics,(2) oceanography,(3) meteorology(4) and biometrics.(5,6) See
refs. 7–10 for comprehensive reviews.

While powerful, MC does have its drawbacks. In particular, an
often slow statistical convergence rate can lead to unacceptably high
computational costs, especially for large-scale, spatially distributed systems.
Considerable effort has therefore gone into accelerating its statistical con-
vergence.(8,10,11) Ideally, one would like every step in the Markov Chain
to yield a new configuration, uncorrelated (as much as possible) from the
current one. However, it is difficult to generate new, statistically uncorre-
lated configurations while at the same time keeping the acceptance rate
within reasonable limits.

In this paper we apply a technique based on the hybrid MC method
(HMC)(12,13) which distinguishes itself by nonlocal state updates. The
method, sometimes referred to as generalized hybrid Monte Carlo (GHMC),
was developed by Toral and Ferreira(14) and primarily applied to con-
densed matter physics, lattice gauge theory and optimization problems in
refs. 14–17. Here we describe how it can be effectively used in problems
involving optimal estimation.

Another means to achieve speedup is a unigrid-based variant
(UMC).(10) Its simplicity, particularly with regard to modifying existing
codes, is very attractive. In this study, we take the opportunity to also
investigate the relative speedup due to UMC.

The specific estimation problem we consider here is the determination
of the statistics of a time series x(t) taking values in an N -dimensional
state space, given incomplete and possibly imprecise observations, y(t), of
that system (see the following refs. 8, 18–21).

The state vector x is assumed to satisfy a known stochastic process

dx(t) = f(x(t), t)dt + (2D)1/2(x, t)dW(t), t > t0,

x(t0) = x0. (1)

For the initial state x0, either its value or probability distribution is
assumed. The deterministic part of the dynamics is given by f . Stochastici-
ty might be inherent in the system dynamics and/or might arise from para-
metrizations of unknown or unresolved physics, or from ignored degrees
of freedom in the dynamics. This is captured by the last term in which the
diffusion matrix D acts on a vector-valued, standard Wiener process W.
The optimal estimate of the state history is then obtained by “assimilat-
ing” observations into the history of the state space statistics, i.e. by con-
ditioning the statistics of the time series on those of the observations.
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For simplcity, we consider observations at discrete times which are
denoted by the Ny-dimensional vector,

y(tm)≡ym, m=1,2, . . . ,Mobs,

where m labels each observation. We assume that these observations are
given by

y(tm)=h(xm)+ εm, (2)

where h : RN → RNy , and εm is an Ny-dimensional noise vector with a
known statistical distribution. We assume that the model noise and mea-
surement errors are uncorrelated and that the initial value of x0 is a ran-
dom variable with a known distribution.

The mean history of the state x, conditioned on the measurements,

xS(t)=E[x(t)|y1, . . . ,yM ] (3)

is the “best estimate” of the state, and the conditional covariance matrix

CS(t)=E[(x(t)−xS(t))(x(t)−xS(t))�|y1, . . . ,yM ]

quantifies its uncertainty (� denotes transpose). The conditional mean
xS(t) is the quantity which minimizes

trCS(t)=E[|(x(t)−xS(t))|2|y1, . . . ,yM ].

It is termed the smoother estimate.
Stratonovich,(22) Kushner(23,24) and Pardoux(25) constructed a sequen-

tial algorithm to solve the above nonlinear estimation problem. We will
denote their methodology by KSP. It is reviewed briefly in ref. 26. Unfor-
tunately, the KSP technique cannot be practically implemented except in
systems with only a few degrees of freedom. This renders the KSP solu-
tion impractical for spatially distributed systems as found in climate/mete-
orology, hydrology, economics, etc. However, the KSP solution, when
implemented on a specific estimation problem, can serve as an ideal
benchmark with which to compare the accuracy of alternative methods. It
is this way that the KSP will be used here.
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2. PROBLEM FORMULATION

We discretize (1) using an explicit Euler–Maruyama scheme.(27) This
leads to the following equation:

xk+1 = xk + f(xk, tk)δt + (2D)1/2(xk, tk)(W(tk + δt)−W(tk)),

k =0,1,2, . . . (4)

xk=0 = x0.

The choice of the time discretization is not unique. While we use
the standard Euler–Maruyama discretization method here, the acceleration
methods that follow can be applied to other discretizations as well.(28–30)

The impact of using different time-discretizations is, in fact, an open
problem.

The path integral representation assigns weights or probabilities to
individual histories. These weights depend on both the stochastic dynamics
and the measurements. Roughly speaking, in the absence of measurements,
histories unlikely to arise from the dynamics are given a lower weight than
histories which are consistent with them. Similarly, when the dynamics are
ignored, histories which are far from the measurements are given lower
weight than those closer to the measurements. A competition between the
noise in the dynamics and the errors in the measurements dictates just
how each effect will contribute.

Without loss of generality we will assume the discrete time steps to
be equally spaced, and further, that the measurement times are commen-
surate with δt , the time step interval. Namely, we define tk = t0 + kδt with
k =0,1, . . . , T , and (tf − t0)/(T +1)= δt .

The probability of the dynamics generating a given history is simply
related to the probability that it experiences a certain noise history

η(tk)= (W(tk + δt)−W(tk)), (5)

at times tk, where k = 0,1,2, . . . , T For Gaussian, uncorrelated noise this
probability Prob{η(t), t = t0, t1, . . . , tT }∼ exp(− 1

2

∑
k |η|2(tk)). Rearranging

terms in (5), we can show that the probability of a given history is given
by Prob{η(t), t = t0, t1, . . . , tT }∼ exp(−Hdynamics), where

Hdynamics ≡
T −1∑

k=0

δt

4
{[(xk+1 −xk)/δt − f(xk, tk)]�D−1(xk, tk)

×[(xk+1 −xk)/δt − f(xk, tk)]}. (6)
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Here � means transpose.
Thus far we have only considered the effects of the dynamics. To

include the influence of observations, we use Bayes’ rule. This modifies the
Hamiltonian above by the addition of the following term:

Hobs = 1
2

Mobs∑

m=1

[h(x(tm))−y(tm)]�R−1[h(x(tm))−y(tm)]. (7)

Here R is the covariance matrix of the observations. This contribution
to the Hamiltonian corresponds to adding a local field or pinning term
which, when the measurements are accurate, forces the state variable to be
close that of the observation. Here we assume that the errors are Gauss-
ian and uncorrelated with each other and uncorrelated with the state of
the system. However, this formalism can, in principle, handle more gen-
eral error statistics. The total Hamiltonian, including dynamics and obser-
vations is then

H =Hdynamics +Hobs. (8)

The statistics of histories of the time-dependent, stochastic dynami-
cal system have been cast as an equilibrium statistical mechanical system
with Hamiltonian (8). As a result, we can apply a host of techniques from
equilibrium statistical mechanics to this problem. In particular accelera-
tion methods to sample Gibbs distributions. In addition to being able to
handle a variety of error and noise terms, this formalism can also handle
nonlinear dynamics.

Rather than sampling the Gibbs distribution, maximum likelihood
methods minimize the Hamiltonian (Eq. (8)). The Hamiltonian is in fact
the log-likelihood.(31) Maximum likelihood methods determine the mean,
the median, or the mode of a distribution, while path-integral methods
can be used to determine the mean and other moment statistics. For exam-
ple, there is a very close relationship between the approach we take here
and variational/adjoint, or so-called 4D-var methods, used extensively in
the ocean/climate community (see ref. 32). In particular, the spacetime
Hamiltonian we construct is identical to the standard cost function for
weakly constrained 4D-var.

The known disadvantage of MC-based methods is, however, their
slow convergence. Hence, if an MC-based strategy is available with a sig-
nificant increase in computational efficiency it will then make it a viable
methodology for large N -dimensional state estimation problems, whether
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these have Gaussian or non-Gaussian statistics and whether they obey lin-
ear or nonlinear dynamics. A speed-up is achieved here by reformulating
the Gibbs distribution sampling strategy. We thus turn to the sampling
problem, showing that a generalized Hybrid Monte Carlo (GHMC) strat-
egy is a fast sampling approach, thus making estimation via hybrid Monte
Carlo viable in a large class of problems of physical interest.

3. SAMPLING

Having constructed the Gibbs distribution on histories, we now
address its sampling. In order to show the efficiency of the GHMC tech-
nique, we will compare it to a standard HMC and a unigrid-based alter-
native (UMC).

3.1. Hybrid Monte Carlo HMC

Hybrid Monte Carlo was developed to address sampling deficiencies
in lattice gauge theory computations in the mid 1980s.(12) Since then it
has been applied to a number of physics problems, mostly in statistical
mechanics, condensed matter and lattice gauge theory. Neal(13) has writ-
ten an introductory survey that shows how the technique has been used
in other applied probability problems.

HMC derives its name from the fact that it involves a mixture of
Hamiltonian molecular dynamics and Metropolis-Hastings Monte Carlo.
A time-discretized integration of the molecular dynamics equations is used
to propose a new configuration. This configuration is then accepted or
rejected by the standard Metropolis-Hastings Monte Carlo criteria. The
acceptance/rejection criteria is the change in total energy.

As with many other MC algorithms, HMC in its original formula-
tion was a local updating scheme. Specifically, the proposed change for the
value of the field at a point depends only on the current configuration
of the field at points near it. For many systems (critical phenomena, for
example) this leads to unacceptably slow statistical sampling. Acceleration
has been achieved using multigrid,(33) cluster algorithms,(34,35) and Fourier
Langevin,(36–38) in statistical mechanics and field theory problems; variants
of these have had some impact on state estimation.(10)

Consider a system whose configuration is specified by T + 1 degrees
of freedom (assume each of mass 1) q0,q1, . . . ,qT . Here the dimension of
each qi is N , the state variable dimension. The HMC algorithm works as
follows: To each of these variables or generalized coordinates qi , a con-
jugate generalized momemtum pi , is assigned. For our purposes H is the
configurational Hamiltonian (8) – the action, or minus the log-likelihood.
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The momenta pi give rise to a kinetic energy HK = ∑
i

|pi |2
2 . The total

Hamiltonian of the system is then

Ĥ =H +HK. (9)

The standard Hamiltonian dynamics of such a system is

dqi

dτ
= pi

(10)
dpi

dτ
= Fi ,

where Fi =− ∂H
∂qi

is the force on the ith degree of freedom, and τ is ficti-
cious MC time. A chain of states is generated in the following way: The
dynamics are discretized in τ , for example, as

q′
i = qi + (δτ )pi + (δτ )2Fi ([q]) (11)

and

p′
i = pi + δτ

2
(F[q]i +F[q′]i ), (12)

for i = 0,1,2, . . . , T . The update from (qi ,pi ) to (q′
i ,p′

i ) will, in general,
not conserve energy as a result of the time discretization. The extent to
which energy is not conserved is controlled by the step size δτ . Detailed
balance is achieved if the configuration obtained after evolving J steps is
accepted with probability min[1, exp�Ĥ ], where

�Ĥ = Ĥ (q′,p′)− Ĥ (q,p). (13)

Thus, the Metropolis step corrects for time discretization errors. The
momentum variables are refreshed after every acceptance/rejection stage
according to a Gaussian distribution of independent variables exp(−HK).
The time-marching and acceptance/rejection process represents one MC
trial.

Much like the Gibbs-sampler, this method allows the system to equil-
ibrate locally, although it would take more than J = 1 steps to do so.
Configurations with large correlation lengths and long correlation times
however would require a significant number of steps to sample the equi-
librium. This is analogous to critical slowing down.
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3.2. Unigrid Monte Carlo UMC

Correlation times are typically longer for longer-wavelength modes.
Recognizing this, researchers have developed MC methods to update these
modes more efficiently. The multigrid approach (see ref. 33) is one par-
ticular strategy. We summarize this approach below and feature it in our
sampling comparison. We will specifically implement and compare a sim-
ple variant multigrid often called “unigrid”.(10)

The unigrid strategy consists of updating the system by taking coher-
ent moves on a number of “length” scales. This is done by decomposing
the system into blocks of contiguous points on the lattice, indexed by i.
The block sizes range from 1 (i.e., the standard local Metropolis) to the
full lattice length. For simplicity we have chosen the lattice to be of size 2l

where l is an integer. Then the blocks to be used are of size 1,2,4, . . . ,2l .
We assume, of course, that mod [T +1,2]=0. The update consists of the
following: To each site of a block the local value has a random variable
δφi added to it. This random variable is selected from some specified dis-
tribution, e.g., Gaussian with 〈δφi〉 = 0, and variance 〈(|δφi |)2〉 = σ 2. The
Hamiltonian is computed before and after the change and a Metropolis
accept/reject as described previously is performed. The distribution of the
proposed change δφ is such that the Markov Chain is ergodic and that the
acceptance rates are approximately 0.50.

3.3. Generalized Monte Carlo GHMC

Nonlocality in the sampling can lead to a reduction of the correlation
times. Toral and Ferreira proposed a general nonlocal strategy that ren-
ders HMC far more efficient.(39) We describe their formulation here and
propose that this strategy makes HMC a viable tool for fairly large state
estimation problems.

The Hamiltonian dynamics given by (11) is replaced by a more gen-
eral form:

dqi

dτ
= Aij pj

(14)
dpi

dτ
= [Aij ]�Fi ,

where 0 � i, j � T and repeated indices assume summation. Here A is a
(T + 1) × (T + 1) matrix. When A is the identity matrix, the equations
reduce to those associated with the standard HMC. The evolution equa-
tions in (15) conserve energy, i.e. dĤ/dτ =0, however, the system may not
be Hamiltonian. The discretization of (15) can be schematically expressed
as
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q ′ = q + δτAp + (δτ )2

2
A(A)T F ([q]) (15)

and

p′ = p + δτ

2
(A)T (F [q]+F [q ′]).

The task is then to find a matrix A that leads to a significant reduc-
tion of the correlation time. One example of such a matrix, for a
problem with state vector dimension N = 1, is the circulant matrix
A = circ(1, exp(−α), exp(−2α), . . . , exp(−T α)) where the constant α can
depend on T . We use this matrix below in the implementation of the
GHMC in the nonlinear estimation problem. A particularly convenient
characteristic of such a matrix is that the required matrix-vector products
can be performed efficiently in (T + 1) log(T + 1) operations. This is an
important consideration in the overall selection of A, especially when T

is large.

4. TEST PROBLEM

For the purposes of comparing to an exact solution we have chosen a
problem for which the KSP solution can be calculated numerically (see ref.
26 for details on implementing the KSP solution). In particular, we will com-
pute a statistical estimate of a scalar state variable (N = 1) which describes
the position on the entire real line of a particle subject to a potential

U(x)=−2x2 +x4 (16)

that has two stable fixed points, in this case at x = 1 and x = −1 and
an unstable fixed point at x =0. The particle is stochastically forced. The
model is described by

ẋ(t)=f (x(t))+κη(t), (17)

where

f (x)=−U ′(x)

and η(t) is white-noise, with zero mean and covariance 〈η(t)η(t ′)〉=κδ(t −
t ′) [see refs. 40, 41]. For specificity we set κ = 0.5 here. With this noise
strength κ, the solution x(t) of (17) fluctuates about the minima in either
of the wells with rather long residence times (long with respect to the
time it takes to cross the potential barrier) and then, occasionally, under-
goes a series of large fluctuations which leads to a transition into the
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other well. The steady-state probability distribution of the model, Ps(x)∝
exp

(
− 2U(x)

κ2

)
is bimodal with peaks at x =±1, the two stable fixed points

of the deterministic dynamics.
The observational data is constructed synthetically: the position of

the particle is observed, on average, to occupy one well for a period of
time and then transitions to the other one. The actual position of the par-
ticle has some degree of uncertainty. In particular, we take a measurement
history where the particle is observed to be at x =−1 for the first five mea-
surements at integer times and then makes a transition, being observed
at x = 1 for the next five measurements. This represents a history where
the particle has made a transition from one well to another between time
t = 5 and t = 6. This history represents what was observed. The actual
state of the system over time, however, is only imperfectly known from
these observations. The observation errors are chosen independently at
each measurement time, with mean zero and variance R =0.04. Note that
the standard deviation

√
R ×100% represents the rms error expressed as a

percentage of the size of the equilibrium states at ±1.
We turn to assessing the effectiveness of the GHMC method at sam-

pling the likelihood function. We will do so by comparing the results
of this scheme to HMC and UMC estimation schemes on the double-
well problem described above. When compared to a solution of the opti-
mal estimation problem HMC, UMC and GHMC, correctly track the
statistics, i.e., there was agreement between MC methods and these in
turn agreed with KSP to within discretization and statistical errors. The
UMC outcome and the KSP are shown in Fig. 1 (the HMC and GHMC
would be identical to the UMC since these cases differ only in the sam-
pling strategy).

To assess the computational cost, however, we need only consider a
time-periodic system and no observations. The parameters used in the sim-
ulations are specified in the Table I. This table displays the number of
effective full-lattice sweeps required for decorrelation for each of the meth-
ods as a function of the lattice points T +1. The number of lattice points
is the number of Euler-Maruyama time steps.

In what follows we assume that mod (T +1,2)=0. We define a lat-
tice sweep as the computational effort involved in finding ({Q}, {P})′b from
({Q}, {P})b, where {·}b represent blocks of conjugate pairs. Each block of
2l members, where 0� l � log2(T +1), is indexed by 1�b� (T +1)/2l . For
HMC and GHMC ({Q}, {P})b = (q,p), the blocks are of size 1 and there
are T + 1 blocks. For UMC, on the other hand, the blocks are of size 2l

and sweeps are required till all block sizes are exhausted. In the case of
HMC and GHMC the update might be done J times. So we define then
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Fig. 1. Comparison between the optimal history, as given by KSP (dashed), and UMC
(solid) for the test problem.

Table I. Correlation times in terms of effective lattice sweeps for

hybrid Monte Carlo (HMC), unigrid hybrid Monte Carlo (UMC),

and generalized hybrid Monte Carlo (GHMC), as a function of the

number of Euler-Maruyama time steps

T +1 HMC (J =1) HMC (J =8) UMC GHMC (J =1)

8 900(125) 170(7) 800(40) 40(8) [0.20]
16 5300(1600) 560(20) 1040(60) 60(10) [0.10]
32 13300(8300) 2700(140) 1430(100) 200(30) [0.05]
64 30000(7800) 2800(400) 1570(100) 420(70) [0.0245]

In parenthesis we state the standard deviation. J is the number of
molecular dynamics integration steps per Metropolis accept/reject. The
GHMC column quotes the value of α in the circulant matrix A used in
the calculations in square brackets.

the effective lattice sweep as being J times the number of lattice sweeps
and report the effective sweep below.

In addition to the cost of the updates GHMC has an added cost
related to the matrix-vector multiplication by the matrix A. Hence, when
we report the cost of performing GHMC we include this extra work in
reporting the effective lattice sweep.

Table I was generated as follows: The MC algorithms were run
until the system reached stationarity. The criteria used in establishing
stationarity was the same in all methods. We have chosen to report the
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correlation times of the sum of the variable x over the total lattice, i.e.,
S(t)=∑T

i=0 xi(t). The correlation time was found by making an exponen-
tial fit to the autocorrelation function, 〈S(t)S(t ′)〉. The table makes it clear
that a significant speedup is achieved using the particular GHMC imple-
mentation described in Section 3.3, when compared to both HMC and
the UMC method described earlier. For HMC with J =8, there are 8 lat-
tice sweeps per full HMC step (this is simply a reflection of having J = 8
molecular dynamics substeps for each MC accept/reject). Clearly, for J =1
there is only 1 lattice sweep, resulting from only 1 MD integration per MC
step.

As mentioned above for GHMC there is the cost of performing the
matrix-vector multiplication per step. For the circulant matrix A we chose,
this multiplies the cost by a factor of log(T +1) (The cost of a matrix-vec-
tor multiplication for a circulant matrix is (T +1) log(T +1), but the linear
factor of T +1 is already accounted for.

With regard to storage, all three methods require similar amounts of
computer resources. If only optimal state estimates are desired, these meth-
ods do not require storage of the covariance matrix or its history. All that
must be stored is the current history.

5. DISCUSSION AND CONCLUSIONS

The class of stochastic processes covered by (1) is quite large: finite-
dimensional approximations to stochastic partial differential equations,
stochastic maps, as well as coupled discrete event systems and thus we
envision that HMC could be of great utility in a variety of state estimation
problems due to the speedup achieved by the generalized sampling strat-
egy: the GHMC strategy could be applied to problems with fairly sizable
(space-time) state vectors, say up to 107. This estimate is based on the fact
that current lattice quantum chromodynamics calculations use HMC for
lattices of this size.

Moreover, path-integral MC methods are capable of handling esti-
mation problems for non-Markovian processes by using a two-time axis
approach. However, there have been few attempts at applying MC tech-
niques to these kinds of problems due to their excessive computational
cost (for most real-world problems, anyway). We think that the GHMC
savings on computational cost could make MC viable and applicable to
large real-world problems of this sort. For linear or very mildly nonlin-
ear dynamics with Gaussian statistics the conditioned statistics are fully
captured by the mean and the variance. However, for strongly nonlin-
ear problems it is often necessary to compute the higher moments. Path
integral methods provide detailed information on representative histories,
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actually yielding an ensemble of histories. Of the particle methods, some
weighted ensemble methods also have this property.(42) There are other
approaches that can succesfully handle highly nonlinear/far from Gauss-
ian statistics. For example, the mean field approaches of Eyink et al. (see
refs. 26, 41, 43), the variational approaches of Bennett and his collabora-
tors (see refs. 44). However, a particularly attractive feature of both the
path-integral method and particle methods,(21) is that they can be imple-
mented as “black boxes”, accepting whatever model (code) as input. In the
other methods mentioned one is required to write fairly extensive auxill-
iary codes.
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